Neural Controller for Nonholonomic Mobile Robot System Based on Position and Orientation Predictor

نویسنده

  • Abeer Fadhil Shimal
چکیده

This paper proposes a neural controller to guide a nonholonomic mobile robot during trajectory tracking. The structure of the controller used consists of two models that describe the kinematical mobile robot system. These models are modified Elman neural networks (MENN) and feed forward multi-layer perceptron (MLP). The modified Elman neural networks model is trained with two stages; off-line and on-line, in order to guarantee that the outputs of the model accurately represent the actual outputs of the mobile robot system. The neural model, after being trained, acts as the position and orientation predictor. The feed forward multi-layer perceptron neural networks controller is trained on-line to find the inverse kinematical model, which controls the outputs of the mobile robot system. The general back propagation algorithm is used to learn the feed forward kinematics neural controller and the predictor. The results obtained from the conducted simulation show the effectiveness of the proposed neural control algorithm. This is demonstrated by the minimized tracking error and the smoothness of the control signal obtained.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Sliding Mode Controller for Trajectory Tracking and Attitude Control of a Nonholonomic Spherical Mobile Robot

Based on dynamic modeling, robust trajectory tracking control of attitude and position of a spherical mobile robot is proposed. In this paper, the spherical robot is composed of a spherical shell and three independent rotors which act as the inner driver mechanism. Owing to rolling without slipping assumption, the robot is subjected to two nonholonomic constraints. The state space representatio...

متن کامل

Dynamical formation control of wheeled mobile robots based on fuzzy logic

In this paper, the important formation control problem of nonholonomic wheeled mobile robots is investigated via a leader-follower strategy. To this end, the dynamics model of the considered wheeled mobile robot is derived using Lagrange equations of motion. Then, using ADAMS multi-body simulation software, the obtained dynamics of the wheeled system in MATLAB software is verified. After that, ...

متن کامل

Design of an Adaptive Neural Predictive Nonlinear Controller for Nonholonomic Mobile Robot System Based on Posture Identifier in the Presence of Disturbance

This paper proposes an adaptive neural predictive nonlinear controller to guide a nonholonomic wheeled mobile robot during continuous and non-continuous gradients trajectory tracking. The structure of the controller consists of two models that describe the kinematics and dynamics of the mobile robot system and a feedforward neural controller. The models are modified Elman neural network and fee...

متن کامل

Design of a Neural Predictive Controller for Nonholonomic Mobile Robot Based on a Pre-assigned Posture Identifier

This paper proposes an adaptive neural predictive controller to guide a nonholonomic mobile robot during trajectory tracking. The structure of the controller consists of two models that describe the kinematics and dynamics of the mobile robot system and a feedforward neural controller. The models are modified Elman neural network and feedforward multi-layer perceptron respectively. The modified...

متن کامل

Navigation of a Mobile Robot Using Virtual Potential Field and Artificial Neural Network

Mobile robot navigation is one of the basic problems in robotics. In this paper, a new approach is proposed for autonomous mobile robot navigation in an unknown environment. The proposed approach is based on learning virtual parallel paths that propel the mobile robot toward the track using a multi-layer, feed-forward neural network. For training, a human operator navigates the mobile robot in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011